Die Integration mit Substitution ist eine Integrationstechnik, die sich zunutze macht, dass nach der Kettenregel int limits_a^bf left(g left(x right) right)g' left(x right) mathrm{dx}= int limits_{g left(a right)}^{g left(b right)}f left(z right) mathrm{dz} gilt. Voraussetzungen Steht ...
Zählergrad Unter dem Zählergrad einer Funktion versteht man die höchste Potenz einer Funktion, die im Zähler vorkommt. Ist die Funktion zum Beispiel frac{x^3+5x^2}{x+4}, so ist der Zählergrad 3, da x^3 die höchste Potenz ist. Nennergrad Unter dem Nennergrad einer ...
Die Ableitung einer Umkehrfunktion lässt sich mithilfe der folgenden Formel bestimmen: (f^{-1})'(x)= frac1{f ;'(f^{-1}(x))}Beispiel 1 Bestimmung der Ableitung von ln(x): ln(x) ist die Umkehrfunktion von e^x, d.h. hier ist f(x)=e^x und f^{-1}(x)= ln(x) Da dann ...
Die Produktregel ist eine Regel für das Ableiten von Produkten zweier differenzierbarer Funktionen u und v: big(u(x) cdot v(x) big)'=u'(x) cdot v(x)+u(x) cdot v'(x) Beispiel Die Ableitung der Funktion f(x) = sqrt{x} cdot sin(x) berechnet sich mit der Produktregel ...
Die Quotientenregel bietet eine Möglichkeit, die Ableitung eines Quotienten zweier differenzierbarer Funktionen u und v zu berechnen: left( frac{u(x)}{v(x)} right)'= frac{u'(x) cdot v(x)-u(x) cdot v'(x)}{(v(x))^2} Merkregel "NAZ minus ZAN" Als Merkregel für den Zähler lässt ...
Die Summenregel besagt, dass die Ableitung der Summe zweier differenzierbarer Funktionen %%u%% und %%v%% gleich der Summe ihrer Ableitungen ist:
$$\big(u(x)+v(x)\big)'=u'(x)+ v'(x)$$
Beispiel
$$(x+e^x)'=(x)'+ (e^x)'=1+e^x$$
Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen: big(u(v(x)) big)'=u'(v(x)) cdot v'(x). Das Multiplizieren mit v'(x) heißt auch Nachdifferenzieren. Um die Ableitung der Verkettung von u und ...
Die Ableitung einer Funktion f an einer Stelle x gibt die Steigung des Graphen der Funktion an dieser Stelle an. Bezeichnet wird sie zumeist mit f'(x).Ist f'(x_0)0, so steigt der Graph von f an der Stelle x_0. Ist f'(x_0)<0, so fällt der Graph von f an der ...
Die Normale ist eine Gerade, die in einem bestimmten Punkt senkrecht auf eine Funktion oder geometrische Figur steht. Sie schneidet die Tangente im entsprechenden Punkt unter einem 90^ circ-Winkel .Download original Geogebra fileBerechnung bei linearen Funktionen Steigung bestimmen Die ...
Die Umkehrfunktion einer Funktion f ist die Funktion f^{-1} , die jedem Funktionswert sein Argument zuordnet:f^{-1} left(f(x) right)=x und f left(f^{-1}(x) right)=xSie existiert nur, wenn jeder Wert in der Wertemenge höchstens einmal "getroffen" wird (wenn jede Parallele ...