Direkt zum Inhalt

326 Treffer in Edutags

Filter 
Tag : 
Funktionen
Filter aufheben
Serlo

Die Parabel ist der Graph einer quadratischen Funktion. Parabeln haben ein typisches bogenförmiges Aussehen und können nach oben oder unten geöffnet sein. Ihr eindeutig bestimmter tiefster bzw. höchster Punkt heißt Scheitelpunkt. Eine Parabel heißt Normalparabel, wenn ihre ...

Serlo

Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die  x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen ...

Serlo

Der Graph G_f einer Funktion ist ihre graphische Repräsentation in der Ebene. Er kann formal als die Menge von Punkten gesehen werden, bei denen die x-Koordinate aus dem Definitionsbereich der Funktion ist und die y-Koordinate der Funktionswert der x-Koordinate. In ...

Serlo

Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man aus der Definitionsmenge herausnehmen. Ausdrücke, die nicht auf ganz ...

Serlo

Die Nullstellen einer Funktion sind die x -Werte, an denen f(x)=0 ist. In einer Nullstelle schneidet oder berührt der Graph der Funktion also die x-Achse. Warum schneidet der Graph bei Nullstellen die x-Achse?  Jeder Punkt, der in dem Graphen einer Funktion enthalten ist, ...

Serlo

Die Asymptote ist eine Gerade oder Kurve, an die sich der Graph einer Funktion im Unendlichen immer mehr annähert. Die Asymptote muss den Graphen im Unendlichen jedoch weder berühren noch schneiden. Unterscheidung von AsymptotenWaagrechte Asymptote Jede Funktion hat höchstens zwei ...

Serlo

Als Partialbruchzerlegung (PBZ) bezeichnet man die Darstellung einer rationalen Funktion als Summe von Brüchen, die im Nenner die Polstellen der Funktion haben. So ist z. B. die Partialbruchzerlegung von frac{2x}{x^2-1} gegeben ...

Serlo

Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist das Vorhandensein (bestimmtes Integral) bzw. Fehlen (unbestimmtes Integral) der Integrationsgrenzen. Bei einem bestimmten Integral ist die Lösung ein einfacher Zahlenwert. Bei einem unbestimmten Integral ...

Serlo

Das Integral stellt einen orientierten Flächeninhalt dar, doch man kann damit auch Flächeninhalte allgemeinerer Flächen, die durch Einschluss verschiedener Funktionsgraphen gegeben sind, berechnen. Integral als Flächenbilanz Das Integral wird dazu verwendet, Flächen zwischen den ...